1. Resnikoff, S., Pascolini, D., Etya’Ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., Mariotti, S.P.: Global data on visual impairment in the year 2002. Bull. World Health Organ. 82, 844–851 (2002)
2. Drall, S.S.: Identification of Different Stages of Diabetic Retinopathy using Support Vector Machine. Chanderprabhu Jain College of Higher Studies & School of Law
3. Somasundaram, S., Alli, P.: A machine learning ensemble classifier for early prediction of diabetic retinopathy. J. Med. Syst. 41, 201 (2017)
4. Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., Virgili, S.P.: Integration of different fuzzy rule-induction methods to improve the classification of patients with diabetic retinopathy
5. Carrera, E.V., González, A., Carrera, R.: Automated detection of diabetic retinopathy using SVM. In: 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4. IEEE (2017)