Skip to main content
Log in

Oscillatory CO Oxidation Over Pt/Al2O3 Catalysts Studied by In situ XAS and DRIFTS

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fresh and mildly aged Pt/Al2O3 model diesel oxidation catalysts with small and large noble metal particle size have been studied during CO oxidation under lean burn reaction conditions to gain more insight into the structure and oscillatory reaction behaviour. The catalytic performance, CO adsorption characteristics using in situ DRIFTS and oxidation state using in situ XAS were correlated. Stable and pronounced oscillations only occurred over the catalyst with smaller particle sizes. Characteristic for this catalyst are low-coordinated surface Pt sites (more corner and edge atoms) which seem to become oxidized at elevated temperature as evidenced by in situ DRIFTS and in situ XAS. In situ XAS further uncovered that the oxidation of the Pt surface starts from the end of the catalyst bed and the oxidation state oscillates like the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ertl G, Norton PR, Rüstig J (1982) Phys Rev Lett 49(2):177–180

    Article  CAS  Google Scholar 

  2. Russell A, Epling WS (2011) Catal Rev 53(4):337–423

    Article  CAS  Google Scholar 

  3. Razon LF, Schmitz RA (1986) Catal Rev Sci Eng 28(1):89–164

    Article  CAS  Google Scholar 

  4. McClure SM, Goodman DW (2009) Chem Phys Lett 469(1–3):1–13

    Article  CAS  Google Scholar 

  5. Ertl G (2008) Angew Chem Int Ed 47(19):3524–3535

    Article  CAS  Google Scholar 

  6. Gracia FJ, Bollmann L, Wolf EE, Miller JT, Kropf AJ (2003) J Catal 220(2):382–391

    Article  CAS  Google Scholar 

  7. Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) J Catal 263(2):228–238

    Article  CAS  Google Scholar 

  8. Campbell CT, Ertl G, Kuipers H, Segner J (1980) J Chem Phys 73(11):5862–5873

    Article  CAS  Google Scholar 

  9. Allian AD, Takanabe K, Fujdala KL, Hao X, Truex TJ, Cai J, Buda C, Neurock M, Iglesia E (2011) J Am Chem Soc 133(12):4498–4517

    Article  CAS  Google Scholar 

  10. Salomons S, Hayes RE, Votsmeier M, Drochner A, Vogel H, Malmberg S, Gieshoff J (2007) Appl Catal B 70(1–4):305–313

    CAS  Google Scholar 

  11. Singh J, Nachtegaal M, Alayon EMC, Stötzel J, van Bokhoven JA (2010) ChemCatChem 2(6):653–657

    Article  CAS  Google Scholar 

  12. Imbihl R, Ertl G (1995) Chem Rev 95(3):697–733

    Article  CAS  Google Scholar 

  13. Yeates RC, Turner JE, Gellman AJ, Somorjai GA (1985) Surf Sci 149(1):175–190

    Article  CAS  Google Scholar 

  14. Sales BC, Turner JE, Maple MB (1982) Surf Sci 114(2–3):381–394

    Article  CAS  Google Scholar 

  15. Gracia FJ, Miller JT, Kropf AJ, Wolf EE (2002) J Catal 209(2):341–354

    Article  CAS  Google Scholar 

  16. Lynch DT, Wanke SE (1984) J Catal 88(2):333–344

    Article  CAS  Google Scholar 

  17. Yang J, Tschamber V, Habermacher D, Garin F, Gilot P (2008) Appl Catal B 83(3–4):229–239

    CAS  Google Scholar 

  18. Singh J, van Bokhoven JA (2010) Catal Today 155(3–4):199–205

    Article  CAS  Google Scholar 

  19. Fanson PT, Delgass WN, Lauterbach J (2001) J Catal 204(1):35–52

    Article  CAS  Google Scholar 

  20. Carlsson PA, Zhdanov VP, Skoglundh M (2006) Phys Chem Chem Phys 8(23):2703–2706

    Article  CAS  Google Scholar 

  21. Marwaha B, Annamalai J, Luss D (2001) Chem Eng Sci 56(1):89–96

    Article  CAS  Google Scholar 

  22. D’Netto GA, Brown JR, Schmitz RA (1984) Chem React Eng 87:247–254

    Google Scholar 

  23. Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven JA, Grunwaldt JD (2010) AIP Conf Proc 1234(1):251–255

    Article  CAS  Google Scholar 

  24. Grunwaldt JD, Caravati M, Hannemann S, Baiker A (2004) Phys Chem Chem Phys 6:11

    Article  Google Scholar 

  25. Mavrikakis M, Stoltze P, Nørskov JK (2000) Catal Lett 64(2):101–106

    Article  CAS  Google Scholar 

  26. Van Hardeveld R, Hartog F (1969) Surf Sci 15(2):189–230

    Article  Google Scholar 

  27. Gracia FJ, Wolf EE (2004) Chem Eng Sci 59(22–23):4723–4729

    CAS  Google Scholar 

  28. Altman EI, Gorte RJ (1986) Surf Sci 172(1):71–80

    Article  CAS  Google Scholar 

  29. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, New York, pp 559–641

    Book  Google Scholar 

  30. Sheppard N, Nguyen TT (1987) The vibrational spectra of carbon monoxide chemisorbed in the surfaces of metal catalysts: a suggested scheme of interpretation. In: Clark RGH, Hester RE (eds) Advances in infrared and Raman spectroscopy, vol 5. Heyden, London, pp 67–148

    Google Scholar 

  31. Brandt RK, Hughes MR, Bourget LP, Truszkowska K, Greenler RG (1993) Surf Sci 286(1–2):15–25

    Article  CAS  Google Scholar 

  32. Kappers M, Maas J (1991) Catal Lett 10(5):365–373

    Article  CAS  Google Scholar 

  33. Yoshida H, Nonoyama S, Yazawa Y, Hattori T (2005) Phys Scripta T115:813

    Article  CAS  Google Scholar 

  34. Stötzel J, Frahm R, Kimmerle B, Nachtegaal M, Grunwaldt J-D (2011) J Phys Chem C 116(1):599–609

    Article  Google Scholar 

  35. Kimmerle B, Baiker A, Grunwaldt J-D (2010) Phys Chem Chem Phys 12:10

    Article  Google Scholar 

  36. Deutschmann O (ed) (2012) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, Weinheim

    Google Scholar 

  37. Grunwaldt J-D, Schroer CG (2010) Chem Soc Rev 39(12):4741–4753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Di Wang (Institute for Nanotechnology, KIT) for TEM work and the group of Peter Pfeifer (Institute for Micro Process Engineering, KIT) for carrying out hydrogen chemisorption measurements. Gian Luca Chiarello is acknowledged for help and in-house modifications of the DRIFTS instrument. Finally we thank KIT, the BMBF Project “Materials in Action (MatAkt, 05K10VKB)” for financial support and SLS (Villigen, Switzerland) and ANKA (Karlsruhe, Germany) for providing beamtime. Maarten Nachtegaal and Olga Safonova (SLS) and Stefan Mangold (ANKA) are acknowledged for support during the XAS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Dierk Grunwaldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boubnov, A., Gänzler, A., Conrad, S. et al. Oscillatory CO Oxidation Over Pt/Al2O3 Catalysts Studied by In situ XAS and DRIFTS. Top Catal 56, 333–338 (2013). https://doi.org/10.1007/s11244-013-9976-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-9976-6

Keywords

Navigation