3D printed porous particle and its geotechnical properties

Author:

Matsumura SatoshiORCID,Kawamura Shima,Kandpal Lalit,Vangla Prashanth

Abstract

AbstractThe study of effects of particle breakage on the mechanical properties of soil composed of porous particles is challenging due to the heterogeneity of the shape and inner void structure of individual particles, even for an identical soil sample, which imparts a compound effect on the mechanical properties. Advancements in three-dimensional (3D) printing technique have enabled the replication of objects with the same shape but different inner structures. This study investigated the feasibility of replicating porous and non-porous particles with the same particle shape characteristics, such as form, waviness, and texture, using 3D printing technique. The particle shape characteristics were evaluated using image analysis. Single particle crushing and triaxial compression tests were conducted to characterize the mechanical properties of the 3D printed and porous volcanic soil particles. It is observed that the mechanical response in the single particle crushing test varies for volcanic soil, which may be attributed to the heterogeneity in the shape and porosity of the particles. However, for each type of 3D printed particle, the response has a high repeatability and varies based on particle porosity. Furthermore, the effects of porosity on the shear response are demonstrated through triaxial tests on 3D printed particles of different porosities. It is noted that although a quantitative comparison is not possible, a qualitative similarity is observed in the response of the 3D printed porous particles with natural porous volcanic soil. Thus, insights into the mechanical response of porous particles can be gained using 3D printed particles.

Funder

Japanese Society of the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3