A phenomenology and epistemology of large language models: transparency, trust, and trustworthiness

Author:

Heersmink Richard,de Rooij Barend,Clavel Vázquez María Jimena,Colombo Matteo

Abstract

AbstractThis paper analyses the phenomenology and epistemology of chatbots such as ChatGPT and Bard. The computational architecture underpinning these chatbots are large language models (LLMs), which are generative artificial intelligence (AI) systems trained on a massive dataset of text extracted from the Web. We conceptualise these LLMs as multifunctional computational cognitive artifacts, used for various cognitive tasks such as translating, summarizing, answering questions, information-seeking, and much more. Phenomenologically, LLMs can be experienced as a “quasi-other”; when that happens, users anthropomorphise them. For most users, current LLMs are black boxes, i.e., for the most part, they lack data transparency and algorithmic transparency. They can, however, be phenomenologically and informationally transparent, in which case there is an interactional flow. Anthropomorphising and interactional flow can, in some users, create an attitude of (unwarranted) trust towards the output LLMs generate. We conclude this paper by drawing on the epistemology of trust and testimony to examine the epistemic implications of these dimensions. Whilst LLMs generally generate accurate responses, we observe two epistemic pitfalls. Ideally, users should be able to match the level of trust that they place in LLMs to the degree that LLMs are trustworthy. However, both their data and algorithmic opacity and their phenomenological and informational transparency can make it difficult for users to calibrate their trust correctly. The effects of these limitations are twofold: users may adopt unwarranted attitudes of trust towards the outputs of LLMs (which is particularly problematic when LLMs hallucinate), and the trustworthiness of LLMs may be undermined.

Publisher

Springer Science and Business Media LLC

Reference84 articles.

1. Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, 100006.

2. Alkaissi, H., & McFarlane, S. (2023). Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus, 15(2), e35179.

3. Andrada, G., Clowes, R., & Smart, P. (2023). Varieties of transparency: Exploring agency within AI systems. AI & Society, 38, 1321–1331.

4. Arkoudas, K. (2023). ChatGPT is no stochastic parrot. But it also claims that 1 is greater than 1. Philosophy & Technology, 36(3), 54.

5. Audi, R. (1997). The place of testimony in the fabric of knowledge and justification. American Philosophical Quarterly, 34(4), 405–422.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3