Model Free Identification of Traffic Conditions Using Unmanned Aerial Vehicles and Deep Learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Medicine
Link
http://link.springer.com/content/pdf/10.1007/s42421-021-00038-z.pdf
Reference51 articles.
1. Ammour N, Alhichri H, Bazi Y, Benjdira B, Alajlan N, Zuair M (2017) Deep learning approach for car detection in UAV imagery. Remote Sens 9(4):312
2. Barmpounakis E, Geroliminis N (2020) On the new era of urban traffic monitoring with massive drone data: the pNEUMA large-scale field experiment. Transp Res Part C Emerg Technol 111:50–71
3. Barmpounakis E, Sauvin GM, Geroliminis N (2020) Lane detection and lane-changing identification with high-resolution data from a swarm of drones. Transp Res Rec J Transp Res Board 2674(7):1–15
4. Barmpounakis EN, Vlahogianni EI, Golias JC (2016) Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges. Int J Transp Sci Technol 5(3):111–122
5. Barmpounakis EN, Vlahogianni EI, Golias JC, Babinec A (2017) How accurate are small drones for measuring microscopic traffic parameters? Transp Lett 11(6):1–9
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme;IEEE/CAA Journal of Automatica Sinica;2024-02
2. Continuous Monitoring of a Signalized Intersection Using Unmanned Aerial Vehicles;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24
3. A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions;Sensors;2023-08-22
4. Visual extensions and anomaly detection in the pNEUMA experiment with a swarm of drones;Transportation Research Part C: Emerging Technologies;2023-02
5. Dilated convolution based RCNN using feature fusion for Low-Altitude aerial objects;Expert Systems with Applications;2022-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3