PMT Signal Transmission for Hard X-Ray Diagnostics of Future Tokamaks

Author:

Nowak vel Nowakowski P.ORCID,Makowski D.ORCID,Walewski W.ORCID

Abstract

AbstractA pair of a scintillator and a Photomultiplier Tube (PMT) is often used as a Hard X-Ray (HXR) radiation detector in existing tokamaks such as JET, EAST, COMPASS or ASDEX-U. Future nuclear fusion reactors such as ITER or DEMO will use more powerful magnets and confine a larger volume of hot plasma. Placement of the detectors used for plasma diagnostic will be constrained by high temperatures, magnetic fields and ionizing radiation present near the tokamak vessel. It might be necessary to move detectors away from tokamak to a safer location. This might generate problems with pulse discrimination and transmission of the signal. In the case of the ITER tokamak, sensitive electronics such as digitizers cannot be installed close to the reactor due to harsh environmental conditions. A new approach to component placement is needed to protect those devices. The PMT signal will be transmitted via an over 100 m long coaxial cable to the digitizer located in the adjacent diagnostic building. The long cables will introduce additional signal attenuation. Also, the RF noise from the tokamak environment can couple into the signal. To improve the signal-to-noise ratio a dedicated PMT amplifier with a high output range (from + 1.5 to − 11 V) was proposed.The paper presents issues with signal transmission in HXR diagnostic systems and includes a discussion on the methodology of PMT signal transmission in the conditions of the future tokamaks. A proposal of guidelines for selection of the signal chain components and design of a dedicated PMT amplifier is part of this paper.

Funder

Euratom Research and Training Programme

Publisher

Springer Science and Business Media LLC

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3