Insights into Predicting Tooth Extraction from Panoramic Dental Images: Artificial Intelligence vs. Dentists

Author:

Motmaen IlaORCID,Xie KunpengORCID,Schönbrunn LeonORCID,Berens JeffORCID,Grunert KimORCID,Plum Anna MariaORCID,Raufeisen JohannesORCID,Ferreira AndréORCID,Hermans AlexanderORCID,Egger JanORCID,Hölzle FrankORCID,Truhn DanielORCID,Puladi BehrusORCID

Abstract

Abstract Objectives Tooth extraction is one of the most frequently performed medical procedures. The indication is based on the combination of clinical and radiological examination and individual patient parameters and should be made with great care. However, determining whether a tooth should be extracted is not always a straightforward decision. Moreover, visual and cognitive pitfalls in the analysis of radiographs may lead to incorrect decisions. Artificial intelligence (AI) could be used as a decision support tool to provide a score of tooth extractability. Material and methods Using 26,956 single teeth images from 1,184 panoramic radiographs (PANs), we trained a ResNet50 network to classify teeth as either extraction-worthy or preservable. For this purpose, teeth were cropped with different margins from PANs and annotated. The usefulness of the AI-based classification as well that of dentists was evaluated on a test dataset. In addition, the explainability of the best AI model was visualized via a class activation mapping using CAMERAS. Results The ROC-AUC for the best AI model to discriminate teeth worthy of preservation was 0.901 with 2% margin on dental images. In contrast, the average ROC-AUC for dentists was only 0.797. With a 19.1% tooth extractions prevalence, the AI model's PR-AUC was 0.749, while the dentist evaluation only reached 0.589. Conclusion AI models outperform dentists/specialists in predicting tooth extraction based solely on X-ray images, while the AI performance improves with increasing contextual information. Clinical relevance AI could help monitor at-risk teeth and reduce errors in indications for extractions.

Funder

Universitätsklinikum RWTH Aachen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3