Comparing accuracy in guided endodontics: dynamic real-time navigation, static guides, and manual approaches for access cavity preparation – an in vitro study using 3D printed teeth

Author:

Huth Karin Christine,Borkowski Lukas,Liebermann Anja,Berlinghoff Frank,Hickel Reinhard,Schwendicke Falk,Reymus Marcel

Abstract

Abstract Objectives To assess root canal localization accuracy using a dynamic approach, surgical guides and freehand technique in vitro. Materials and methods Access cavities were prepared for 4 different 3D printed tooth types by 4 operators (n = 144). Deviations from the planning in angle and bur positioning were compared and operating time as well as tooth substance loss were evaluated (Kruskal-Wallis Test, ANOVA). Operating method, tooth type, and operator effects were analyzed (partial eta-squared statistic). Results Angle deviation varied significantly between the operating methods (p < .0001): freehand (9.53 ± 6.36°), dynamic (2.82 ± 1.8°) and static navigation (1.12 ± 0.85°). The highest effect size was calculated for operating method (ηP²=0.524), followed by tooth type (0.364), and operator (0.08). Regarding deviation of bur base and tip localization no significant difference was found between the methods. Operating method mainly influenced both parameters (ηP²=0.471, 0.379) with minor effects of tooth type (0.157) and operator. Freehand technique caused most substance loss (p < .001), dynamic navigation least (p < .0001). Operating time was the shortest for freehand followed by static and dynamic navigation. Conclusions Guided endodontic access may aid in precise root canal localization and save tooth structure. Clinical relevance Although guided endodontic access preparation may require more time compared to the freehand technique, the guided navigation is more accurate and saves tooth structure.

Funder

Universitätsklinik München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3