Event-triggered model-free adaptive control for nonlinear systems using intuitionistic fuzzy neural network: simulation and experimental validation

Author:

Abd-Elhaleem Sameh,Hussien Mohamed A.,Hamdy Mohamed,Mahmoud Tarek A.

Abstract

AbstractThis article presents model-free adaptive control based on an intuitionistic fuzzy neural network for nonlinear systems with event-triggered output. Essentially, model-free adaptive control (MFAC) is constructed by establishing an online approximate model of the controlled system using the pseudo-partial derivative (PPD) form. By the proposed scheme, first, an intuitionistic fuzzy neural network (IFNN) is developed as an estimator for time-varying PPD in both compact-form dynamic linearization (CFDL) and partial-form dynamic linearization (PFDL) for the MFAC technique. Second, two periodic event-triggered output methods are integrated with the proposed IFNN-based MFAC in both forms to save communication resources and reduce the computation burden and energy consumption. Based on the Lyapunov theory and BIBO stability approach, necessary conditions are established to guarantee the convergence of the adaptive law of the IFNN controller and the boundary of the tracking error of the closed loop system. Third, regarding the feasibility and the effectiveness of the developed control method, two simulation examples including the continuous stirred-tank reactor (CSTR) system and the heat exchanger system are given. Finally, the practical validation of the proposed data-driven control method is conducted via the speed control of a DC motor.

Funder

Minufiya University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3