An approach to pedestrian walking behaviour classification in wireless communication and network failure contexts

Author:

Kareem Z. H.,Zaidan A. A.,Ahmed M. A.,Zaidan B. B.,Albahri O. S.ORCID,Alamoodi A. H.,Malik R. Q.,Albahri A. S.,Ameen H. A.,Garfan Salem,Mohammed A.,Zaidan R. A.,Ramli K. N.

Abstract

AbstractDespite the wide range of research on pedestrian safety, previous studies have failed to analyse the real-time data of pedestrian walking misbehaviour on the basis of either pedestrian behaviour distraction or movements during specific activities to realise pedestrian safety for positive (normal) or aggressive pedestrians. Practically, pedestrian walking behaviour should be recognised, and aggressive pedestrians should be differentiated from normal pedestrians. This type of pedestrian behaviour recognition can be converted into a classification problem, which is the main challenge for pedestrian safety systems. In addressing the classification challenge, three issues should be considered: identification of factors, collection of data and exchange of data in the contexts of wireless communication and network failure. Thus, this work proposes a novel approach to pedestrian walking behaviour classification in the aforementioned contexts. Three useful phases are proposed for the methodology of this study. In the first phase involving factor identification, several factors of the irregular walking behaviour of mobile phone users are established by constructing a questionnaire that can determine users’ options (attitudes/opinions) about mobile usage whilst walking on the street. In the second phase involving data collection, four different testing scenarios are developed to acquire the real-time data of pedestrian walking behaviour by using gyroscope sensors. In the third phase involving data exchange, the proposed approach is presented on the basis of two modules. The first module for pedestrian behaviour classification uses random forest and decision tree classifiers part of machine learning techniques via wireless communication when a server becomes available. The developed module is then trained and evaluated using five category sets to obtain the best classification of pedestrian walking behaviour. The second module is based on four standard vectors for classifying pedestrian walking behaviour when a server is unavailable. Fault-tolerant pedestrian walking behaviour is identified and is initiated when failures occur in a network. Two sets of real-time data are presented in this work. The first dataset is related to the questionnaire data from 262 sampled respondents, and the second dataset comprises data on 263 sampled participants with pedestrian walking signals. Experimental results confirm the efficacy of the proposed approach relative to previous ones.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3