A novel BWM-entropy-COPRAS group decision framework with spherical fuzzy information for digital supply chain partner selection

Author:

Gao Kai,Liu Tingting,Rong YuanORCID,Simic VladimirORCID,Garg HarishORCID,Senapati TapanORCID

Abstract

AbstractThe transformation and upgrading of traditional supply chain models through digital technology receive widespread attention from the fields of circular economy, manufacturing, and sustainable development. Enterprises need to choose a digital supply chain partner (DSCP) during the process of digital transformation in uncertain and sustainable environments. Thus, the research constructs an innovative decision methodology for selecting the optimal DSCP to achieve digital transformation. The proposed methodology is propounded based upon the entropy measure, generalized Dombi operators, integrated weight-determination model, and complex proportional assessment (COPRAS) method under spherical fuzzy circumstances. Specifically, a novel entropy measure is proposed for measuring the fuzziness of spherical fuzzy (SF) sets, while generalized Dombi operators are presented for fusing SF information. The related worthwhile properties of these operators are discussed. Further, an integrated criteria weight-determination model is presented by incorporating objective weights obtained from the SF entropy-based method and subjective weights from the SF best worst method. Afterward, an improvement of the COPRAS method is proposed based on the presented generalized Dombi operators with SF information. Lastly, the practicability and validity of the proposed methodology are verified by an empirical study that selects an appropriate DSCP for a new energy vehicle enterprise to finish the goal of digital transformation. The sensitivity and comparative analysis are carried out to illustrate the stability, reliability, and superiority of the propounded methodology from multiple perspectives. The results and conclusions indicate that the propounded method affords a synthetic and systematic uncertain decision-making framework for identifying the optimal DSCP with incomplete weight information.

Funder

National Social Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3