OBMI: oversampling borderline minority instances by a two-stage Tomek link-finding procedure for class imbalance problem

Author:

Leng Qiangkui,Guo Jiamei,Tao Jiaqing,Meng Xiangfu,Wang Changzhong

Abstract

AbstractMitigating the impact of class imbalance datasets on classifiers poses a challenge to the machine learning community. Conventional classifiers do not perform well as they are habitually biased toward the majority class. Among existing solutions, the synthetic minority oversampling technique (SMOTE) has shown great potential, aiming to improve the dataset rather than the classifier. However, SMOTE still needs improvement because of its equal oversampling to each minority instance. Based on the consensus that instances far from the borderline contribute less to classification, a refined method for oversampling borderline minority instances (OBMI) is proposed in this paper using a two-stage Tomek link-finding procedure. In the oversampling stage, the pairs of between-class instances nearest to each other are first found to form Tomek links. Then, these minority instances in Tomek links are extracted as base instances. Finally, new minority instances are generated, each of which is linearly interpolated between a base instance and one minority neighbor of the base instance. To address the overlap caused by oversampling, in the cleaning stage, Tomek links are employed again to remove the borderline instances from both classes. The OBMI is compared with ten baseline methods on 17 benchmark datasets. The results show that it performs better on most of the selected datasets in terms of the F1-score and G-mean. Statistical analysis also indicates its higher-level Friedman ranking.

Funder

National Natural Science Foundation of China

PhD Startup Foundation of Liaoning Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3