Abstract
AbstractBackground noises are usually treated as redundant or even harmful to voice conversion. Therefore, when converting noisy speech, a pretrained module of speech separation is usually deployed to estimate clean speech prior to the conversion. However, this can lead to speech distortion due to the mismatch between the separation module and the conversion one. In this paper, a noise-robust voice conversion model is proposed, where a user can choose to retain or to remove the background sounds freely. Firstly, a speech separation module with a dual-decoder structure is proposed, where two decoders decode the denoised speech and the background sounds, respectively. A bridge module is used to capture the interactions between the denoised speech and the background sounds in parallel layers through information exchanging. Subsequently, a voice conversion module with multiple encoders to convert the estimated clean speech from the speech separation model. Finally, the speech separation and voice conversion module are jointly trained using a loss function combining cycle loss and mutual information loss, aiming to improve the decoupling efficacy among speech contents, pitch, and speaker identity. Experimental results show that the proposed model obtains significant improvements in both subjective and objective evaluation metrics compared with the existing baselines. The speech naturalness and speaker similarity of the converted speech are 3.47 and 3.43, respectively.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献