A noise-robust voice conversion method with controllable background sounds

Author:

Chen Lele,Zhang Xiongwei,Li Yihao,Sun MengORCID,Chen Weiwei

Abstract

AbstractBackground noises are usually treated as redundant or even harmful to voice conversion. Therefore, when converting noisy speech, a pretrained module of speech separation is usually deployed to estimate clean speech prior to the conversion. However, this can lead to speech distortion due to the mismatch between the separation module and the conversion one. In this paper, a noise-robust voice conversion model is proposed, where a user can choose to retain or to remove the background sounds freely. Firstly, a speech separation module with a dual-decoder structure is proposed, where two decoders decode the denoised speech and the background sounds, respectively. A bridge module is used to capture the interactions between the denoised speech and the background sounds in parallel layers through information exchanging. Subsequently, a voice conversion module with multiple encoders to convert the estimated clean speech from the speech separation model. Finally, the speech separation and voice conversion module are jointly trained using a loss function combining cycle loss and mutual information loss, aiming to improve the decoupling efficacy among speech contents, pitch, and speaker identity. Experimental results show that the proposed model obtains significant improvements in both subjective and objective evaluation metrics compared with the existing baselines. The speech naturalness and speaker similarity of the converted speech are 3.47 and 3.43, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3