Sparse semi-supervised multi-label feature selection based on latent representation

Author:

Zhao Xue,Li QiaoyanORCID,Xing Zhiwei,Yang Xiaofei,Dai Xuezhen

Abstract

AbstractWith the rapid development of the Internet, there are a large number of high-dimensional multi-label data to be processed in real life. To save resources and time, semi-supervised multi-label feature selection, as a dimension reduction method, has been widely used in many machine learning and data mining. In this paper, we design a new semi-supervised multi-label feature selection algorithm. First, we construct an initial similarity matrix with supervised information by considering the similarity between labels, so as to learn a more ideal similarity matrix, which can better guide feature selection. By combining latent representation with semi-supervised information, a more ideal pseudo-label matrix is learned. Second, the local manifold structure of the original data space is preserved by the manifold regularization term based on the graph. Finally, an effective alternating iterative updating algorithm is applied to optimize the proposed model, and the experimental results on several datasets prove the effectiveness of the approach.

Funder

the Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Key Research and Development Projects of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3