From federated learning to federated neural architecture search: a survey

Author:

Zhu Hangyu,Zhang Haoyu,Jin YaochuORCID

Abstract

AbstractFederated learning is a recently proposed distributed machine learning paradigm for privacy preservation, which has found a wide range of applications where data privacy is of primary concern. Meanwhile, neural architecture search has become very popular in deep learning for automatically tuning the architecture and hyperparameters of deep neural networks. While both federated learning and neural architecture search are faced with many open challenges, searching for optimized neural architectures in the federated learning framework is particularly demanding. This survey paper starts with a brief introduction to federated learning, including both horizontal, vertical, and hybrid federated learning. Then neural architecture search approaches based on reinforcement learning, evolutionary algorithms and gradient-based are presented. This is followed by a description of federated neural architecture search that has recently been proposed, which is categorized into online and offline implementations, and single- and multi-objective search approaches. Finally, remaining open research questions are outlined and promising research topics are suggested.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference139 articles.

1. Elsken T, Metzen JH, Hutter F (2018) Neural architecture search: a survey, arXiv preprint arXiv:1808.05377

2. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications. ACM Trans Intell Syst Technol (TIST) 10(2):1–19

3. McMahan B, Moore E, Ramage D, Hampson S, Arcas BAy (2017) Communication-efficient learning of deep networks from decentralized data. Artif Intell Stat1273–1282

4. Zhang G-D, Zhao S-Y, Gao H, Li W-J (2018) Feature-distributed svrg for high-dimensional linear classification, arXiv preprint arXiv:1802.03604

5. McDonald R, Hall K, Mann G (2010) Distributed training strategies for the structured perceptron. In: Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics, 456–464

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3