Abstract
AbstractThe motion intensity of patient is significant for the trajectory control of exoskeleton robot during rehabilitation, as it may have important influence on training effect and human–robot interaction. To design rehabilitation training task according to situation of patients, a novel control method of rehabilitation exoskeleton robot is designed based on motion intensity perception model. The motion signal of robot and the heart rate signal of patient are collected and fused into multi-modal information as the input layer vector of deep learning framework, which is used for the human–robot interaction model of control system. A 6-degree of freedom (DOF) upper limb rehabilitation exoskeleton robot is designed previously to implement the test. The parameters of the model are iteratively optimized by grouping the experimental data, and identification effect of the model is analyzed and compared. The average recognition accuracy of the proposed model can reach up to 99.0% in the training data set and 95.7% in the test data set, respectively. The experimental results show that the proposed motion intensity perception model based on deep neural network (DNN) and the trajectory control method can improve the performance of human–robot interaction, and it is possible to further improve the effect of rehabilitation training.
Funder
shaanxi provincial key r&d program
natural science foundation of shaanxi province
fundamental research funds for the central universities
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献