Machine learning-driven automatic storage space recommendation for object-based cloud storage system

Author:

Mondal Anindita SarkarORCID,Mukhopadhyay Anirban,Chattopadhyay Samiran

Abstract

AbstractAn object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM, K-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with K-NN classifier provides better performance than the others.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Object-Based Big Data Storage Systems on Architectures and Services: A Recent Survey;Journal of The Institution of Engineers (India): Series B;2024-02-08

2. Deep Reinforcement Learning based Data Placement optimization in Data Center Networks;2023 IEEE International Conference on Big Data (BigData);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3