Abstract
AbstractAn object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM, K-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with K-NN classifier provides better performance than the others.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献