A graph neural network with negative message passing and uniformity maximization for graph coloring

Author:

Wang Xiangyu,Yan Xueming,Jin YaochuORCID

Abstract

AbstractGraph neural networks have received increased attention over the past years due to their promising ability to handle graph-structured data, which can be found in many real-world problems such as recommender systems and drug synthesis. Most existing research focuses on using graph neural networks to solve homophilous problems, and not much attention has been paid to heterophily-type problems. In this paper, we propose a graph network model for graph coloring, which is a class of representative heterophilous problems. Different from the message passing in conventional graph networks, we introduce negative message passing into a physics-inspired graph neural network for more effective information exchange in handling graph coloring problems. Moreover, a new term in the objective function taking into account the information entropy of nodes is suggested to increase the uniformity of the color assignment of each node, giving the neural network more chance to choose suitable colors for each node. Therefore, it could avoid the final solution getting stuck into the local optimum. Experimental studies are carried out to compare the proposed graph model with five state-of-the-art algorithms on ten publicly available graph coloring problems and d-regular graphs with up to $$10^4$$ 10 4 nodes, demonstrating the effectiveness of the proposed graph neural network.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3