An IoT enabled system for enhanced air quality monitoring and prediction on the edge

Author:

Moursi Ahmed SamyORCID,El-Fishawy NawalORCID,Djahel SoufieneORCID,Shouman Marwa AhmedORCID

Abstract

AbstractAir pollution is a major issue resulting from the excessive use of conventional energy sources in developing countries and worldwide. Particulate Matter less than 2.5 µm in diameter (PM2.5) is the most dangerous air pollutant invading the human respiratory system and causing lung and heart diseases. Therefore, innovative air pollution forecasting methods and systems are required to reduce such risk. To that end, this paper proposes an Internet of Things (IoT) enabled system for monitoring and predicting PM2.5 concentration on both edge devices and the cloud. This system employs a hybrid prediction architecture using several Machine Learning (ML) algorithms hosted by Nonlinear AutoRegression with eXogenous input (NARX). It uses the past 24 h of PM2.5, cumulated wind speed and cumulated rain hours to predict the next hour of PM2.5. This system was tested on a PC to evaluate cloud prediction and a Raspberry Pi to evaluate edge devices’ prediction. Such a system is essential, responding quickly to air pollution in remote areas with low bandwidth or no internet connection. The performance of our system was assessed using Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), coefficient of determination (R2), Index of Agreement (IA), and duration in seconds. The obtained results highlighted that NARX/LSTM achieved the highest R2 and IA and the least RMSE and NRMSE, outperforming other previously proposed deep learning hybrid algorithms. In contrast, NARX/XGBRF achieved the best balance between accuracy and speed on the Raspberry Pi.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3