Evolutionary convolutional neural network for image classification based on multi-objective genetic programming with leader–follower mechanism

Author:

Liu Qingqing,Wang XianpengORCID,Wang Yao,Song Xiangman

Abstract

AbstractAs a popular research in the field of artificial intelligence in the last 2 years, evolutionary neural architecture search (ENAS) compensates the disadvantage that the construction of convolutional neural network (CNN) relies heavily on the prior knowledge of designers. Since its inception, a great deal of researches have been devoted to improving its associated theories, giving rise to many related algorithms with pretty good results. Considering that there are still some limitations in the existing algorithms, such as the fixed depth or width of the network, the pursuit of accuracy at the expense of computational resources, and the tendency to fall into local optimization. In this article, a multi-objective genetic programming algorithm with a leader–follower evolution mechanism (LF-MOGP) is proposed, where a flexible encoding strategy with variable length and width based on Cartesian genetic programming is designed to represent the topology of CNNs. Furthermore, the leader–follower evolution mechanism is proposed to guide the evolution of the algorithm, with the external archive set composed of non-dominated solutions acting as the leader and an elite population updated followed by the external archive acting as the follower. Which increases the speed of population convergence, guarantees the diversity of individuals, and greatly reduces the computational resources. The proposed LF-MOGP algorithm is evaluated on eight widely used image classification tasks and a real industrial task. Experimental results show that the proposed LF-MOGP is comparative with or even superior to 35 existing algorithms (including some state-of-the-art algorithms) in terms of classification error and number of parameters.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3