Drying of fibrous roots strengthens the negative power relation between biomechanical properties and diameter

Author:

Ekeoma E. C.,Boldrin D.ORCID,Loades K. W.,Bengough A. G.

Abstract

Abstract Aims Test the effects of root drying on biomechanical properties of fibrous roots. Methods Tensile strength and Young’s modulus of Festuca arundinacea roots were tested after full hydration and during progressive drying. Root diameter, water loss, and water content were measured for all treatments. Results Hydrated roots showed weak relations between biomechanical properties and diameter. After only 30 min air-drying, both tensile strength and Young’s modulus increased significantly in thin roots (< 1 mm) and after 60 min drying, both strength and Young’s modulus showed a negative power relation with root diameter. The maximum strength and Young’s modulus values recorded after 60 min drying were respectively three- and four-times greater than in hydrated roots. Strength and Young’s modulus increased rapidly when water content dropped below 0.70 g g−1. These biomechanical changes were the result of root diameter shrinkage of up to 50% after 60 min drying, driven by water loss of up to 0.7 g g−1. Conclusions Strength and Young’s modulus largely increased with root drying. We suggest controlling root moisture and testing fully hydrated roots as standard protocol, given that slope instability is generally caused by heavy rainfall events and loss of matric suction.

Funder

Rural & Environment Science & Analytical Services Division of the Scottish Government

Petroleum Technology Development Fund

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3