The role of root carboxylate release on rare earth element (hyper)accumulation in plants – a biogeochemical perspective on rhizosphere chemistry

Author:

Wiche OliverORCID,Pourret Olivier

Abstract

AbstractThe paper of van der Ent et al. (Plant Soil 485:247–257, 2023), published in the previous issue, reports the hyperaccumulation of rare earth elements (REE) in plant species from the Proteaceae for the first time. Indeed, the high REE accumulation in Proteaceae is not completely unexpected, given that the plants release large amounts of carboxylates to acquire phosphorus and micronutrients. However, it is somewhat questionable that the efficiency of element mobilization alone sufficiently explains the large variability in REE accumulation among different taxa of Proteaceae or other P-efficient species that typically show low concentrations of REE. Given that REE3+ share chemical similarities to Ca2+ but form stable complexes with ligands similar to Al3+, it is reasonable that uptake and accumulation of REE depend not solely on element mobility but also on the dynamics of element speciation governed by the formation, stability, and fate of carboxylate-REE-complexes in the rhizosheaths. The rationale behind this contention is that for elements with low mobility in soil, changes in chemical speciation may increase the availability only if the complex stabilities that depend on rhizosphere pH allow a breakdown during uptake. In this commentary, we explore the idea that REE accumulation depends on rhizosphere processes related to nutrient acquisition and element exclusion that overlap in time, space, and function depending on the composition of metal-chelating ligands released by plant roots in concert with rhizosphere pH. Based on data from greenhouse and field experiments, we propose a model where plants with a P-mining strategy (hyper)accumulate REE when rhizosphere pH is below a critical value shifting the REE speciation to available forms.

Funder

OECD

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3