CH4 transport in wetland plants under controlled environmental conditions – separating the impacts of phenology from environmental variables

Author:

Ge MengyuORCID,Korrensalo Aino,Putkinen Anuliina,Laiho Raija,Kohl Lukas,Pihlatie Mari,Lohila Annalea,Makiranta Päivi,Siljanen Henri,Tuittila Eeva-Stiina,Wang Jinsong,Koskinen Markku

Abstract

Abstract Background and Aims Methane (CH4) fluxes at peatland plant surfaces are net results of transport of soil-produced CH4 and within-plant CH4 production and consumption, yet factors and processes controlling these fluxes remain unclear. We aimed to assess the effects of seasonality, environmental variables, and CH4 cycling microbes on CH4 fluxes from characteristic fen species. Methods Four species (Carex rostrata, Menyanthes trifoliata, Betula nana, Salix lapponum) were selected, and their CH4 fluxes determined in climate-controlled environments with three mesocosms per growing season per species. Microbial genes for CH4 cycling were analysed to check the potential for within-plant CH4 production and oxidation. Two extra experiments were conducted: removal of C. rostrata leaves to identify how leaves constrain CH4 transport, and a labelling experiment with S. lapponum to distinguish between plant-produced and soil-produced CH4 in the plant flux. Results All species showed seasonal variability in CH4 fluxes. Higher porewater CH4 concentration increased fluxes from C. rostrata and M. trifoliata, decreased fluxes from S. lapponum, and did not affect fluxes from B. nana. Air temperature only and negatively affected CH4 flux from C. rostrata. Light level did not impact CH4 fluxes. Both methanogens and methanotrophs were detected in shoots of S. lapponum and M. trifoliata, methanotrophs in B. nana, and neither in C. rostrata. Conclusion Our study demonstrates that the seasonal phase of the plants regulates the CH4 fluxes they mediate across species. The detection of methanogens and methanotrophs in herbs and shrubs suggests that microbial processes may contribute to their CH4 fluxes.

Funder

University of Helsinki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3