A generic form of fibre bundle models for root reinforcement of soil

Author:

Meijer G. J.ORCID

Abstract

Abstract Purpose The mechanical contribution of plant roots to the soil shear strength is commonly modelled using fibre bundle models (FBM), accounting for sequential breakage of roots. This study provides a generic framework, able to includes the many different existing approaches, to quantify the effect of various model assumptions. Methods The framework uses (1) a single model parameter determining how load is shared between all roots, (2) a continuous power-law distribution of root area ratio over a range of root diameters, and (3) power-law relationships between root diameters and biomechanical properties. A new load sharing parameter, closely resembling how roots mobilise strength under landslide conditions, is proposed. Exact analytical solutions were found for the peak root reinforcement, thus eliminating the current need for iterative algorithms. Model assumptions and results were validated against existing biomechanical and root reinforcement data. Results Root reinforcements proved very sensitive to the user-defined load sharing parameter. It is shown that the current method of discretising all roots in discrete diameter classes prior to reinforcement calculations leads to significant overestimations of reinforcement. Addition of a probabilistic distribution of root failure by means of Weibull survival functions, thus adding a second source of sequential mobilisation, further reduced predicted reinforcements, but only when the reduction due to load sharing was limited. Conclusion The presented solutions greatly simplify root reinforcement calculations while maintaining analytical exactness as well as clarity in the assumptions made. The proposed standardisation of fibre bundle-type models will greatly aid comparison and exchange of data.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3