Automated discovery of angle theorems

Author:

Todd PhilipORCID

Abstract

AbstractWe consider geometry theorems whose premises and statement comprise a set of bisector conditions. Each premise and the statement can be represented as the rows of a “bisector matrix”: one with three non zero elements per row, one element with value -2 and the others with value 1. The existence of a theorem corresponds to rank deficiency in this matrix. Our method of theorem discovery starts with identification of rank deficient bisector matrices. Some such matrices can be represented as graphs whose vertices correspond to matrix rows and whose edges correspond to matrix columns. We show that if a bisector matrix which can be represented as a graph is rank deficient, then the graph is bicubic. We give an algorithm for finding the rank deficient matrices for a Hamiltonian bicubic graph, and report on the results for graphs with 6,8,10 and 12 vertices. We discuss a method of deriving rank deficient bisector matrices with more than 2 non-zero elements. We extend the work to matrices containing rows corresponding to angle trisectors.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using GXWeb for Theorem Proving and Mathematical Modelling;Electronic Proceedings in Theoretical Computer Science;2024-01-22

2. A program to create new geometry proof problems;Annals of Mathematics and Artificial Intelligence;2023-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3