1. Benferhat, S., Dubois, D., Prade, H., Williams, M.A.: A framework for iterated belief revision using possibilistic counterparts to Jeffrey’s rule. Fundam. Inform. 99(2), 147–168 (2010)
2. Benferhat, S., Smaoui, S.: Possibilistic causal networks for handling interventions: a new propagation algorithm. In: Proceedings, 22nd AAAI Conference on Artificial Intelligence (AAAI’07), pp. 373–378. AAAI Press, Menlo Park (2007)
3. Benferhat, S., Tabia, K., Sedki, K.: On analysis of unicity of Jeffrey’s rule of conditioning in a possibilistic framework. In: Proceedings, 11th International Symposium on Artificial Intelligence and Mathematics (ISAIM’10). Florida, USA (2010)
4. Borgelt, C., Kruse, R.: Learning from imprecise data: possibilistic graphical models. Comput. Stat. Data Anal. 38(4), 449–463 (2002)
5. Borgelt, C., Gebhardt, J., Kruse, R.: Possibilistic graphical models. In: Proceedings, International School for the Synthesis of Expert Knowledge (ISSEK’98), pp. 51–68. Udine, Italy (1998)