Micromachined Infrared Thermopile Detector Based on a Suspended Film Structure

Author:

Lei Cheng,Guan Yihao,Liang Ting,Wu Xuezhan,Bai Yuehang,Gong Mingfeng,Jia Pingang,Xiong Jijun

Abstract

AbstractThe micro-electromechanical system (MEMS) infrared thermopile is the core working device of modern information detection systems such as spectrometers, gas sensors, and remote temperature sensors. We presented two different structures of MEMS infrared thermopiles based on suspended film structures. They both deposited silicon nitride over the entire surface as a passivated absorber layer in place of a separate absorber zone, and the thermocouple strip was oriented in the same direction as the temperature gradient. The same MEMS preparation process was used and finally two different structures of the thermopile were characterized separately for testing to verify the impact of our design on the detector. The test results show that the circular and double-ended symmetrical thermopile detectors have responsivities of 27.932 V/W and 23.205 V/W, specific detectivities of 12.1×107 cm·Hz1/2·W−1 and 10.1×107 cm·Hz1/2·W−1, and response time of 26.2 ms and 27.06 ms, respectively. In addition, rectangular double-ended symmetric thermopile has a larger field of view than a circular thermopile detector, but is not as mechanically stable as a circular thermopile.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3