Open-vent volcanoes fuelled by depth-integrated magma degassing

Author:

Edmonds M.ORCID,Liu E.J.,Cashman K.V.

Abstract

AbstractOpen-vent, persistently degassing volcanoes—such as Stromboli and Etna (Italy), Villarrica (Chile), Bagana and Manam (Papua New Guinea), Fuego and Pacaya (Guatemala) volcanoes—produce high gas fluxes and infrequent violent strombolian or ‘paroxysmal’ eruptions that erupt very little magma. Here we draw on examples of open-vent volcanic systems to highlight the principal characteristics of their degassing regimes and develop a generic model to explain open-vent degassing in both high and low viscosity magmas and across a range of tectonic settings. Importantly, gas fluxes from open-vent volcanoes are far higher than can be supplied by erupting magma and independent migration of exsolved volatiles is integral to the dynamics of such systems. The composition of volcanic gases emitted from open-vent volcanoes is consistent with its derivation from magma stored over a range of crustal depths that in general requires contributions from both magma decompression (magma ascent and/or convection) and iso- and polybaric second boiling processes. Prolonged crystallisation of water-rich basalts in crustal reservoirs produces a segregated exsolved hydrous volatile phase that may flux through overlying shallow magma reservoirs, modulating heat flux and generating overpressure in the shallow conduit. Small fraction water-rich melts generated in the lower and mid-crust may play an important role in advecting volatiles to subvolcanic reservoirs. Excessive gas fluxes at the surface are linked to extensive intrusive magmatic activity and endogenous crustal growth, aided in many cases by extensional tectonics in the crust, which may control the longevity and activity of open-vent volcanoes. There is emerging abundant geophysical evidence for the existence of a segregated exsolved magmatic volatile phase in magma storage regions in the crust. Here we provide a conceptual picture of gas-dominated volcanoes driven by magmatic intrusion and degassing throughout the crust.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3