Performance Optimization of a Multi-groove Water Lubricated Journal Bearing with Partial Slip by Taguchi Analysis

Author:

Ganesha A.,Joseph Albin,Pai Raghuvir,Khader Shah Mohammed Abdul,Kumar Nitesh,Kumar Shiva,Girish H.ORCID

Abstract

AbstractThe importance of preserving the ecological balance has paved the way for developing water lubricated bearings for marine vessels and other various applications. These bearings have found widespread applications in high pressure water pumps, water-power plants and power generation stations in sea, mining industries, ships, boats and submarines. To investigate the performance envelope of a water lubricated journal bearing (WLJB) with partial slip/no slip pattern, a multi-groove bearing model is developed and analyzed using CFD in the present study. Taguchi analysis method is utilized to determine the highest influential parameter affecting the pressure distribution and load-carrying capacity of a water lubricated journal bearing. From Taguchi method, optimum values identified for design parameters such as attitude angle, groove angle, groove height and number of grooves are 60°, 9°, 7 mm and 2, respectively. For the optimum combination model, a higher load bearing capacity of 1484.5 N is attained. Approximately, 2.88 times increase in peak pressures are noted from the current optimal bearing model by comparing with previous findings. Results indicated that the number of grooves and groove angle are the most influential parameters affecting the bearing load capacity. Partial slip conditions are applied at the grooved surfaces of a bearing model designed based on the identified optimal groove parameters. Influence of varying slip intensity on bearing load capacity is analyzed using CFD simulation. Appropriate selection of slip regions and slip amplitude is found to play a major role influencing the performance of the water lubricated journal bearing.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3