Fault Detection of Complex Processes Using nonlinear Mean Function Based Gaussian Process Regression: Application to the Tennessee Eastman Process
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
https://link.springer.com/content/pdf/10.1007/s13369-020-05052-x.pdf
Reference62 articles.
1. Russell, E.; Chiang, L.H.: Data-Driven Methods for Fault Detection and Diagnosis in Chemical Processes, 2001st ed., Springer, London (n.d.)
2. Ge, Z.; Song, Z.; Ding, S.X.; Huang, B.: Data mining and analytics in the process industry: the role of machine learning. IEEE Access. 5, 20590–20616 (2017). https://doi.org/10.1109/ACCESS.2017.2756872
3. Jackson, J.E.: Principal components and factor analysis: part I—principal components. J. Qual. Technol. 12, 201–213 (1980). https://doi.org/10.1080/00224065.1980.11980967
4. Russell, E.L.; Chiang, L.H.; Braatz, R.D.: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemom. Intell. Lab. Syst. 51, 81–93 (2000). https://doi.org/10.1016/S0169-7439(00)00058-7
5. Shao, J.D.; Rong, G.; Lee, J.M.: Learning a data-dependent kernel function for KPCA-based nonlinear process monitoring. Chem. Eng. Res. Des. 87, 1471–1480 (2009). https://doi.org/10.1016/j.cherd.2009.04.011
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault Detection and Isolation for Time-Varying Processes Using Neural-Based Principal Component Analysis;Processes;2024-06-14
2. Unsupervised Outlier Detection in Continuous Nonlinear Systems: Hybrid Approaches with Autoencoders and One-Class SVMs;Lecture Notes in Networks and Systems;2024
3. Faults prediction and monitoring of complex processes using an ensemble of machine learning regression models: application to the Tennessee Eastman Process;2023-06-09
4. Reducing smearing effect in contribution plots and improving fault detection via polynomial approximated isomap embeddings;The Canadian Journal of Chemical Engineering;2022-11-16
5. pyTEP: A Python package for interactive simulations of the Tennessee Eastman process;SoftwareX;2022-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3