Stacked LSTM for Short-Term Traffic Flow Prediction using Multivariate Time Series Dataset
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
https://link.springer.com/content/pdf/10.1007/s13369-022-06575-1.pdf
Reference37 articles.
1. Al-Sakran, H.O.: Intelligent traffic information system based on integration of internet of things and agent technology. Int. J. Adv. Computer Sci. Appl. (2015). https://doi.org/10.14569/IJACSA.2015.060206
2. Billings, D.; Yang, J.S.: Application of the arima models to urban roadway travel time prediction - a case study. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2529–2534 (2006)
3. Castro-Netoa, M.; Jeong, Y.S.; Jeong, M.K.; D.Hana, L.: Online-svr for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications 36(3, Part 2), 6164 – 6173 (2009). https://doi.org/10.1016/j.eswa.2008.07.069. http://www.sciencedirect.com/science/article/pii/S0957417408004740
4. Chao, H.; Su, S.; Cheng-hong, W.: A real-time short-term traffic flow adaptive forecasting method based on arima model. Acta Simulata Systematica Sinica 7, 871 (2004)
5. Duan, Y.; L.V.; Y., Wang, F.Y.: Travel time prediction with lstm neural network. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1053–1058 (2016)
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Survey of short-term traffic flow prediction based on LSTM;International Journal of Modern Physics C;2024-07-09
2. A multi-granularity hierarchical network for long- and short-term forecasting on multivariate time series data;Applied Soft Computing;2024-05
3. LSTM deep learning long-term traffic volume prediction model based on Markov state description;Journal of the Chinese Institute of Engineers;2024-04
4. Short-time traffic flow prediction based on GRA-SLSTM model;International Conference on Smart Transportation and City Engineering (STCE 2023);2024-02-14
5. Machine learning based approach for traffic flow prediction using long short-term memory;AIP Conference Proceedings;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3