CSO Classifier 3.0: a scalable unsupervised method for classifying documents in terms of research topics

Author:

Salatino AngeloORCID,Osborne Francesco,Motta Enrico

Abstract

AbstractClassifying scientific articles, patents, and other documents according to the relevant research topics is an important task, which enables a variety of functionalities, such as categorising documents in digital libraries, monitoring and predicting research trends, and recommending papers relevant to one or more topics. In this paper, we present the latest version of the CSO Classifier (v3.0), an unsupervised approach for automatically classifying research papers according to the Computer Science Ontology (CSO), a comprehensive taxonomy of research areas in the field of Computer Science. The CSO Classifier takes as input the textual components of a research paper (usually title, abstract, and keywords) and returns a set of research topics drawn from the ontology. This new version includes a new component for discarding outlier topics and offers improved scalability. We evaluated the CSO Classifier on a gold standard of manually annotated articles, demonstrating a significant improvement over alternative methods. We also present an overview of applications adopting the CSO Classifier and describe how it can be adapted to other fields.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences

Reference72 articles.

1. Alam, M., Biswas, R., Chen, Y., Dessì, D., Gesese, G.A., Hoppe, F., Sack, H.: Hierclassart: knowledge-aware hierarchical classification of scholarly articles. In: Companion Proceedings of the Web Conference (2021)

2. Angioni, S., Salatino, A., Osborne, F., Recupero, D.R., Motta, E.: The aida dashboard: Analysing conferences with semantic technologies. In: 19th International Semantic Web Conference (ISWC 2020) (2020). http://oro.open.ac.uk/72293/

3. Angioni, S., Salatino, A.A., Osborne, F., Recupero, D.R., Motta, E.: Integrating knowledge graphs for analysing academia and industry dynamics. In: Bellatreche, L., Bieliková, M., Boussaïd, O., Catania, B., Darmont, J., Demidova, E., Duchateau, F., Hall, M., Merčun, T., Novikov, B., Papatheodorou, C., Risse, T., Romero, O., Sautot, L., Talens, G., Wrembel, R., Žumer, M. (eds.) ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium, pp. 219–225. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-55814-7_18

4. Beck, M., Rizvi, S.T.R., Dengel, A., Ahmed, S.: From automatic keyword detection to ontology-based topic modeling. In: International Workshop on Document Analysis Systems, pp. 451–465. Springer (2020). https://doi.org/10.1007/978-3-030-57058-3_32

5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: A pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1371

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3