Optimization of Non-thermal Plasma-Assisted Catalytic Oxidation for Methane Emissions Abatement as an Exhaust Aftertreatment Technology

Author:

Gholami Rahman,Stere Cristina,Chansai Sarayute,Singhania Amit,Goguet Alexandre,Hinde Peter,Millington Paul,Hardacre Christopher

Abstract

AbstractWhile methane-powered vehicles produce fewer greenhouse gas emissions in comparison to conventional fuel vehicles, there is a significant amount of methane slip in their exhaust that needs to be treated. This study investigates non-thermal plasma (NTP) assisted catalytic methane oxidation as an alternative method for the low temperature methane slip abatement applicable to the exhaust of biogas methane-powered vehicles. It is concluded that high CH4 conversion and CO2 selectivity can be obtained using NTP-catalysis at low temperature with Pd/Al2O3 found to be the most promising candidate among all catalysts tested. In addition, it was found that CH4 conversion efficiency was dependent on the feed gas components and gas hourly space velocity as well as how the activation energy is introduced. For example, a combination of plasma and external heat supply provides advantages in terms of CH4 conversion along with lower plasma energy consumption. The presence of N2 and O2 in the feed gas during NTP-catalytic methane oxidation results in unfavourable NOX formation which linearly increases with CH4 conversion. These results conclude that the most suitable aftertreatment option involves the combination of an oxidation catalyst with plasma to target the hydrocarbon and CH4 oxidation, followed by an ammonia-SCR system to convert the NOX formed in plasma assisted zone.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Condensed Matter Physics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3