Carbon Nanosheets Synthesis in a Gliding Arc Reactor: On the Reaction Routes and Process Parameters

Author:

Ma Xintong,Li Sirui,Chaudhary Rohit,Hessel Volker,Gallucci Fausto

Abstract

AbstractNon-thermal plasma is a promising technology for high purity nanomaterial synthesis in a fast, flexible and controllable process. Gliding arc discharge, as one of the most efficient non-thermal plasmas, has been widely used in gas treatment but rarely studied for the nanomaterial synthesis. In this study, a comparison study for carbon nanosheets synthesis including toluene dissociation and graphite exfoliation was investigated in a 2D gliding arc reactor at atmospheric pressure. The effects of gas flow rate, precursor concentration and power input on the structures of carbon nanosheets produced through the two synthesis routes were explored and compared. Amorphous carbon nanosheets were produced in both approaches with a few crystalline structures formation in the case of toluene dissociation. The thickness of carbon nanosheets synthesized from graphite exfoliation was less than 3 nm, which was thinner and more uniform than that from toluene dissociation. The flow rate of carrier gas has direct influence on the morphology of carbon nanomaterials in the case of toluene dissociation. Carbon spheres were also produced along with nanosheets when the flow rate decreased from 2 to 0.5 L/min. However, in the case of graphite exfoliation, only carbon nanosheets were observed regardless of the change in flow rate of the carrier gas. The generated chemical species and plasma gas temperatures were measured and estimated for the mechanism study, respectively.

Funder

Eindhoven University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3