Time series real time naive bayes electrocardiogram signal classification for efficient disease prediction using fuzzy rules
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s12652-020-02003-0.pdf
Reference18 articles.
1. Alarsan FI (2019) Analysis and classification of heart diseases using heartbeat features and machine learning algorithms. Springer J Big Data 2019:1–15
2. Alfaras M (2019) A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front Phys 2019:1–14
3. da Luz EJS, Schwartz WR, Cámara-Chavez G, Menotti D (2016) ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Prog Biomed 127:144–164
4. Diker A (2019) A new technique for ECG signal classification genetic algorithm Wavelet Kernel extreme learning machine. Elsevier Optik 180:46–65
5. Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T (2016) Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput Methods Prog Biomed 127:52–63
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Arrhythmia classification based on multi-feature multi-path parallel deep convolutional neural networks and improved focal loss;Mathematical Biosciences and Engineering;2024
2. Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images;Computer Systems Science and Engineering;2023
3. Prediction of students’ employability using clustering algorithm: A hybrid approach;International Journal of Modeling, Simulation, and Scientific Computing;2022-03-12
4. A review of different ECG classification/detection techniques for improved medical applications;International Journal of System Assurance Engineering and Management;2022-01-04
5. SCMFTS: Scalable and Distributed Complexity Measures and Features for Univariate and Multivariate Time Series in Big Data Environments;International Journal of Computational Intelligence Systems;2021-11-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3