Gaussian-process-based robot learning from demonstration

Author:

Arduengo MiguelORCID,Colomé Adrià,Lobo-Prat Joan,Sentis Luis,Torras Carme

Abstract

AbstractLearning from demonstration allows to encode task constraints from observing the motion executed by a human teacher. We present a Gaussian-process-based learning from demonstration (LfD) approach that allows robots to learn manipulation skills from demonstrations of a human teacher. By exploiting the potential that Gaussian process (GP) models offer, we unify in a single, entirely GP-based framework, the main features required for a state-of-the-art LfD approach. We address how GP can be used to effectively learn a policy from trajectories in task space. To achieve an effective generalization across demonstrations, we propose the novel Task Completion Index (TCI) for temporal alignment of task trajectories. Also, our probabilistic GP-based representation allows encoding variability throughout the different phases of the task. Finally, we present a method to efficiently adapt the policy to fulfill new requirements and modulate the robot behavior as a function of task variability. This approach has been successfully tested in a real-world application, namely teaching a TIAGo robot to open different types of doors.

Funder

HORIZON EUROPE European Research Council

Instituto de Robótica e Informática Industrial

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference55 articles.

1. Abu-Dakka FJ, Kyrki V (2020) Geometry-aware dynamic movement primitives. In: IEEE International Conference on robotics and automation (ICRA), pp 4421–4426

2. Abu-Dakka FJ, Saveriano M (2020) Variable impedance control and learning: a review. Front Robot AI 7:590681

3. Abu-Dakka FJ, Huang Y, Silvério J et al (2021) A probabilistic framework for learning geometry-based robot manipulation skills. Robot Auton Syst 141(103):761

4. Alvarez MA, Rosasco L, Lawrence ND (2012) Kernels for vector-valued functions: a review. Found Trends Mach Learn 4(3):195–266

5. Bilj HL (2018) LQG and Gaussian process techniques for fixed-structure wind turbine control. PhD Dissertation, Delft University of Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3