A federated learning-enabled predictive analysis to forecast stock market trends

Author:

Pourroostaei Ardakani SaeidORCID,Du Nanjiang,Lin Chenhong,Yang Jiun-Chi,Bi Zhuoran,Chen Lejun

Abstract

AbstractThis article proposes a federated learning framework to build Random Forest, Support Vector Machine, and Linear Regression models for stock market prediction. The performance of the federated learning is compared against centralised and decentralised learning frameworks to figure out the best fitting approach for stock market prediction. According to the results, federated learning outperforms both centralised and decentralised frameworks in terms of Mean Square Error if Random Forest (MSE = 0.021) and Support Vector Machine techniques (MSE = 37.596) are used, while centralised learning (MSE = 0.011) outperforms federated and decentralised frameworks if a linear regression model is used. Moreover, federated learning gives a better model training delay as compared to the benchmarks if Linear Regression (time = 9.7 s) and Random Forest models (time = 515 s) are used, whereas decentralised learning gives a minimised model training delay (time = 3847 s) for Support Vector Machine.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3