Author:
Lydia M. Dhasny,Prakash M.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Amorim PH, de Moraes TF, da Silva JV, Pedrini H (2019). Lung nodule segmentation based on convolutional neural networks using multi-orientation and patchwise mechanisms. In: VipIMAGE 2019: proceedings of the VII ECCOMAS thematic conference on computational vision and medical image processing, October 16–18, 2019, Porto, Portugal. Springer International Publishing, pp 286–295
2. Aresta G, Jacobs C, Araújo T, Cunha A, Ramos I, van Ginneken B, Campilho A (2019) iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Sci Rep 9(1):1–9
3. Boykov Y, Kolmogorov V (2004) An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137
4. Cavalcanti PG, Shirani S, Scharcanski J, Fong C, Meng J, Castelli J, Koff D (2016) Lung nodule segmentation in chest computed tomography using a novel background estimation method. Quant Imaging Med Surg 6(1):16
5. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on comparative study of lung nodules applying machine learning and deep learning techniques;Multimedia Tools and Applications;2024-08-20
2. Performance Comparison of Deep Learning Methods for Lung Nodule Benign and Malignancy Classification;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28
3. Development of Framework to Find Lung Canker Using GAN Technique;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09