Abstract
AbstractIt is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Fuel Technology
Reference51 articles.
1. Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities (1st ed.). National Science Teachers Association.
2. Civil, M., & Hunter, R. (2015). Participation of non-dominant students in argumentation in the mathematics classroom. Intercultural Education, 26(4), 296–312. https://doi.org/10.1080/14675986.2015.1071755
3. Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. Journal for Research in Mathematics Education. Monograph, 10, i–177. https://doi.org/10.2307/749924
4. Cole, R., Becker, N., Towns, M., Sweeney, G., Wawro, M., & Rasmussen, C. (2012). Adapting a methodology from mathematics education research to chemistry education research: Documenting collective activity. International Journal of Science and Mathematics Education, 10(1), 193–211. https://doi.org/10.1007/s10763-011-9284-1
5. Conner, A. (2008). Expanded Toulmin diagrams: A tool for investigating complex activity in classrooms. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX (Vol. 2, pp. 361–368). Morelia, Mexico: Cinvestav-UMSNH.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献