Abstract
AbstractIn this paper, an efficient and robust methodology to simulate saturated soils subjected to low-medium frequency dynamic loadings under large deformation regime is presented. The coupling between solid and fluid phases is solved through the dynamic reduced formulation $$u-p_\mathrm{w}$$
u
-
p
w
(solid displacement – pore water pressure) of the Biot’s equations. The additional novelty lies in the employment of an explicit two-steps Newmark predictor-corrector time integration scheme that enables accurate solutions of related geomechanical problems at large strain without the usually high computational cost associated with the implicit counterparts. Shape functions based on the elegant Local Maximum Entropy approach, through the Optimal Transportation Meshfree framework, are considered to solve numerically different dynamic problems in fluid saturated porous media.
Funder
Ministerio de Ciencia, Innovación y Universidades
Entrecanales Foundation
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献