A physically consistent particle method for incompressible fluid flow calculation

Author:

Kondo MasahiroORCID

Abstract

AbstractIn general, mechanical energy monotonically decreases in a physically consistent system, constructed with conservative force and dissipative force. This feature is important in designing a particle method, which is a discrete system approximating continuum fluid with particles. When the discretized system can be fit into a framework of analytical mechanics, it will be a physically consistent system which prevents instability like particle scattering along with unphysical mechanical energy increase. This is the case also in incompressible particle methods. However, most incompressible particle methods do not satisfy the physical consistency, and they need empirical relaxations to suppress the system instability due to the unphysical energy behavior. In this study, a new incompressible particle method with the physical consistency, moving particle full-implicit (MPFI) method, is developed, where the discretized interaction forces are related to an analytical mechanical framework for the systems with dissipation. Moreover, a new pressure evaluation technique based on the virial theorem is proposed for the system. Using the MPFI method, static pressure, droplet extension, standing wave and dam break calculations were conducted. The capability to predict pressure and motion of incompressible free surface flow was presented, and energy dissipation property depending on the particle size and time step width was studied through the calculations.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Fluid Flow and Transfer Processes,Modeling and Simulation,Numerical Analysis,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3