Evaluating county-level lung cancer incidence from environmental radiation exposure, PM2.5, and other exposures with regression and machine learning models

Author:

Lee Heechan,Hanson Heidi A.,Logan Jeremy,Maguire Dakotah,Kapadia Anuj,Dewji Shaheen,Agasthya Greeshma

Abstract

AbstractCharacterizing the interplay between exposures shaping the human exposome is vital for uncovering the etiology of complex diseases. For example, cancer risk is modified by a range of multifactorial external environmental exposures. Environmental, socioeconomic, and lifestyle factors all shape lung cancer risk. However, epidemiological studies of radon aimed at identifying populations at high risk for lung cancer often fail to consider multiple exposures simultaneously. For example, moderating factors, such as PM2.5, may affect the transport of radon progeny to lung tissue. This ecological analysis leveraged a population-level dataset from the National Cancer Institute’s Surveillance, Epidemiology, and End-Results data (2013–17) to simultaneously investigate the effect of multiple sources of low-dose radiation (gross $$\gamma$$ γ activity and indoor radon) and PM2.5 on lung cancer incidence rates in the USA. County-level factors (environmental, sociodemographic, lifestyle) were controlled for, and Poisson regression and random forest models were used to assess the association between radon exposure and lung and bronchus cancer incidence rates. Tree-based machine learning (ML) method perform better than traditional regression: Poisson regression: 6.29/7.13 (mean absolute percentage error, MAPE), 12.70/12.77 (root mean square error, RMSE); Poisson random forest regression: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The effect of PM2.5 increased with the concentration of environmental radon, thereby confirming findings from previous studies that investigated the possible synergistic effect of radon and PM2.5 on health outcomes. In summary, the results demonstrated (1) a need to consider multiple environmental exposures when assessing radon exposure’s association with lung cancer risk, thereby highlighting (1) the importance of an exposomics framework and (2) that employing ML models may capture the complex interplay between environmental exposures and health, as in the case of indoor radon exposure and lung cancer incidence. Graphical abstract

Funder

The Office of Biological and Environmental Research’s Biological Systems Science Division

Publisher

Springer Science and Business Media LLC

Reference74 articles.

1. Abergel, R., Aris, J., Bolch, W. E., Dewji, S. A., Golden, A., Hooper, D. A., Margot, D., Menker, C. G., Paunesku, T., Schaue, D., & Woloschak, G. E. (2022). The enduring legacy of Marie Curie: Impacts of radium in 21st century radiological and medical sciences. International Journal of Radiation Biology, 98(3), 267–275. https://doi.org/10.1080/09553002.2022.2027542

2. Barros-Dios, J. M., Ruano-Ravina, A., Perez-Rios, M., Castro-Bernardez, M., Abal-Arca, J., & Tojo-Castro, M. (2012). Residential radon exposure, histologic types, and lung cancer risk. A case-control study in Galicia Spain. Cancer Epidemiol Biomarkers & Prevention, 21(6), 951–958. https://doi.org/10.1158/1055-9965.EPI-12-0146-T

3. Belloni, M., Laurent, O., Guihenneuc, C., & Ancelet, S. (2020). Bayesian profile regression to deal with multiple highly correlated exposures and a censored survival outcome. First application in ionizing radiation epidemiology. Frontiers in Public Health, 8, 557006. https://doi.org/10.3389/fpubh.2020.557006

4. Blomberg, A. J., Coull, B. A., Jhun, I., Vieira, C. L. Z., Zanobetti, A., Garshick, E., Schwartz, J., & Koutrakis, P. (2019). Effect modification of ambient particle mortality by radon: a time series analysis in 108 US cities. Journal of the Air & Waste Management Association, 69(3), 266–276. https://doi.org/10.1080/10962247.2018.1523071

5. Boice, J. D., Jr., Cohen, S. S., Mumma, M. T., & Ellis, E. D. (2022). the million person study, whence it came and why. International Journal of Radiation Biology, 98(4), 537–550. https://doi.org/10.1080/09553002.2019.1589015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3