Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: a case study from Bochnia, Poland

Author:

Puławska AleksandraORCID,Manecki MaciejORCID,Flasza Michał,Styszko KatarzynaORCID

Abstract

Abstract The composition and distribution of airborne particles in different locations in a salt mine were determined in terms of their origin, the distance from the air inlet, and the adaptation of post-mining chambers and corridors for tourists and general audience. The composition of aerosols in air was also evaluated from the perspective of human health. Air samples were collected on filters by using portable air pumps, in a historical underground salt mine in Bochnia (Poland), which is currently a touristic and recreation attraction and sanatorium. The particulate matter (PM) concentration was determined using the gravimetric method by weighing quartz filters. The content of carbon, water-soluble constituents, trace elements, and minerals was also determined. A genetic classification of the suspended matter was proposed and comprised three groups: geogenic (fragments of rock salt and associated minerals from the deposit), anthropogenic (carbon-bearing particles from tourist traffic and small amounts of fly ash, soot, and rust), and biogenic particles (occasional pollen). The total PM concentration in air varied between 21 and 79 μg/m3 (with PM4 constituting 4–24 μg/m3). The amount of atmospheric dust components coming from the surface was low and decreased with the distance from the intake shaft, thus indicating the self-cleaning process. NaCl dominated the water-soluble constituents, while Fe, Al, Ag, Mn, and Zn dominated the trace elements, with the concentration of majority of them below 30 ng/m3. These metals are released into air from both natural sources and the wear or/and corrosion of mining and tourists facilities in the underground functional space. No potentially toxic elements or constituents were detected. The presence of salt particles and salty spray in the atmosphere of salt mine, which may have anti-inflammatory and antiallergic properties, is beneficial to human health. This study will allow for a broader look at the potential of halotherapy in underground salt mines from a medical and regulatory point of view.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3