Representativeness of the particulate matter pollution assessed by an official monitoring station of air quality in Santiago, Chile: projection to human health

Author:

Préndez MargaritaORCID,Nova PatricioORCID,Romero HugoORCID,Mendes FlávioORCID,Fuentealba RaúlORCID

Abstract

AbstractSantiago, capital city of Chile, presents air pollution problems for decades mainly by particulate matter, which significantly affects population health, despite national authority efforts to improve air quality. Different properties of the particulate matter (PM10, PM2.5 and PM1 fractions, particle surface and number) were measured with an optical spectrometer. The sampling was done during spring 2019 at different sites within the official representative area of Independencia monitoring station (ORMS-IS). The results of this study evidence large variations in PM mass concentration at small-scale areas within the ORMS-IS representative zone, which reports the same value for the total area. Results from PM properties such as PM1, particle number and particle surface distribution show that these properties should be incorporated in regular monitoring in order to improve the understanding of the effects of these factors on human health. The use of urban-climate canopy-layer models in a portion of the sampled area around the monitoring station demonstrates the influence of street geometry, building densities and vegetation covers on wind velocity and direction. These factors, consequently, have an effect on the potential for air pollutants concentrations. The results of this study evidence the existence of hot spots of PM pollution within the area of representativeness of the ORMS-IS. This result is relevant from the point of view of human health and contributes to improve the effectiveness of emission reduction policies.

Funder

Universidad de Chile

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,General Environmental Science,Water Science and Technology,Environmental Chemistry,General Medicine,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3