1. Ambrosio, L., Dancer, N.: Calculus of variations and partial differential equations. In: Buttazzo, G., Marino, A., Murthy, M.K.V. (eds.) Topics on Geometrical Evolution Problems and Degree Theory. Springer-Verlag, Berlin (2020) . (MR1757706)
2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)
3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations. J. Differ. Equ. 261, 1285–1316 (2016)
4. Bobkov, V.: Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theory. Differ. Equ. 56, 1–15 (2014)
5. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in $$H^{1}({\mathbb{R}}^{2})$$. Adv. Nonlinear Anal. 9, 1066–1091 (2019)