Abstract
AbstractAdapting the Newton–Puiseux Polygon process to nonlinear q-difference equations of any order and degree, we compute their power series solutions, study the properties of the set of exponents of the solutions and give a bound for their q-Gevrey order in terms of the order of the original equation.
Funder
Ministerio de Ciencia e Innovación
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference32 articles.
1. Adams, C.R.: On the linear ordinary $$q$$-difference equation. Ann. Math. 30(1), 195–205 (1928–1929)
2. Adams, C.R.: Linear $$q$$-difference equations. Bull. Am. Math. Soc. 31, 361–400 (1931)
3. Barbe, P., Cano, J., Ayuso, P. Fortuny., McCormick, W. C.: q-algebraic equations, their power series solutions, and the asymptotic behavior of their coefficients (2020). arXiv: 2006.09527
4. Bézivin, Jean-Paul.: Convergence des solutions formelles de certaines équations fonctionnelles. Aequationes Math. 44(1), 84–99 (1992)
5. Bézivin, Jean-Paul.: Sur les équations fonctionnelles aux $$q$$-différences. Aequationes Math. 43(2–3), 159–176 (1992)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献