An Optimal Thirty-Second-Order Iterative Method for Solving Nonlinear Equations and a Conjecture

Author:

Varona Juan LuisORCID

Abstract

AbstractMany multipoint iterative methods without memory for solving non-linear equations in one variable are found in the literature. In particular, there are methods that provide fourth-order, eighth-order or sixteenth-order convergence using only, respectively, three, four or five function evaluations per iteration step, thus supporting the Kung-Traub conjecture on the optimal order of convergence. This paper shows how to find optimal high order root-finding iterative methods by means of a general scheme based in weight functions. In particular, we explicitly give an optimal thirty-second-order iterative method; as long as we know, an iterative method with that order of convergence has not been described before. Finally, we give a conjecture about optimal order multipoint iterative methods with weights.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics

Reference32 articles.

1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. (N.S.) 10, 3–35 (2004)

2. Babajee, D.K.R., Thukral, R.: On a $$4$$-point sixteenth-order King family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, 13 (2012)

3. Basto, M., Abreu, T., Semiao, V., Calheiros, F.L.: Convergence and dynamics of structurally identical root finding methods. Appl. Numer. Math. 120, 257–269 (2017)

4. Behl, R., Amat, S., Magreñán, Á.A., Motsa, S.S.: An efficient optimal family of sixteenth order methods for nonlinear models. J. Comput. Appl. Math. 354, 271–285 (2019)

5. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: A new efficient and optimal sixteenth-order scheme for simple roots of nonlinear equations. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 60(108), no. 2, 127–140 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3