Performance prediction, pacing profile and running pattern of elite 1-h track running events

Author:

Girardi MicheleORCID,Gattoni ChiaraORCID,Sponza Luca,Marcora Samuele MariaORCID,Micklewright DominicORCID

Abstract

Abstract Purpose This study aimed at comparing the predictive accuracy of the power law (PL), 2-parameter hyperbolic (HYP) and linear (LIN) models on elite 1-h track running performance, and evaluating pacing profile and running pattern of the men’s best two 1-h track running performances of all times. Methods The individual running speed–distance profile was obtained for nine male elite runners using the three models. Different combinations of personal bests times (3000 m-marathon) were used to predict performance. The level of absolute agreement between predicted and actual performance was evaluated using intraclass correlation coefficient (ICC), paired t test and Bland–Altman analysis. A video analysis was performed to assess pacing profile and running pattern. Results Regardless of the predictors used, no significant differences (p > 0.05) between predicted and actual performances were observed for the PL model. A good agreement was found for the HYP and LIN models only when the half-marathon was the longest event predictor used (ICC = 0.718–0.737, p < 0.05). Critical speed (CS) was highly dependent on the predictors used. Unlike CS, PLV20 (i.e., the running speed corresponding to a 20-min performance estimated using the PL model) was associated with 1-h track running performances (r = 0.722–0.807, p < 0.05). An even pacing profile with minimal changes of step length and frequency was observed. Conclusions The PL model may offer the more realistic 1-h track running performance prediction among the models investigated. An even pacing might be the best strategy for succeeding in such running events.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3