Enhancing the magnetocaloric response of high-entropy metallic-glass by microstructural control

Author:

Yin Hangboce,Law Jia Yan,Huang Yongjiang,Shen Hongxian,Jiang Sida,Guo Shu,Franco Victorino,Sun Jianfei

Abstract

AbstractNon-equiatomic high-entropy alloys (HEAs), the second-generation multi-phase HEAs, have been recently reported with outstanding properties that surpass the typical limits of conventional alloys and/or the first-generation equiatomic single-phase HEAs. For magnetocaloric HEAs, non-equiatomic (Gd36Tb20Co20Al24)100−xFex microwires, with Curie temperatures up to 108 K, overcome the typical low temperature limit of rare-earth-containing HEAs (which typically concentrate lower than around 60 K). For alloys with x = 2 and 3, they possess some nanocrystals, though very minor, which offers a widening in the Curie temperature distribution. In this work, we further optimize the magnetocaloric responses of x = 3 microwires by microstructural control using the current annealing technique. With this processing method, the precipitation of nanocrystals within the amorphous matrix leads to a phase compositional difference in the microwires. The multi-phase character leads to challenges in rescaling the magnetocaloric curves, which is overcome by using two reference temperatures during the scaling procedure. The phase composition difference increases with increasing current density, whereby within a certain range, the working temperature span broadens and simultaneously offers relative cooling power values that are at least 2-fold larger than many reported conventional magnetocaloric alloys, both single amorphous phase or multi-phase character (amorphous and nanocrystalline). Among the amorphous rare-earth-containing HEAs, our work increases the working temperature beyond the typical <60 K limit while maintaining a comparable magnetocaloric effect. This demonstrates that microstructural control is a feasible way, in addition to appropriate compositional design selection, to optimize the magnetocaloric effect of HEAs.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3