Two is better than one: longitudinal detection and volumetric evaluation of brain metastases after Stereotactic Radiosurgery with a deep learning pipeline

Author:

Hammer Yonny,Najjar Wenad,Kahanov Lea,Joskowicz Leo,Shoshan Yigal

Abstract

Abstract Purpose Close MRI surveillance of patients with brain metastases following Stereotactic Radiosurgery (SRS) treatment is essential for assessing treatment response and the current disease status in the brain. This follow-up necessitates the comparison of target lesion sizes in pre- (prior) and post-SRS treatment (current) T1W-Gad MRI scans. Our aim was to evaluate SimU-Net, a novel deep-learning model for the detection and volumetric analysis of brain metastases and their temporal changes in paired prior and current scans. Methods SimU-Net is a simultaneous multi-channel 3D U-Net model trained on pairs of registered prior and current scans of a patient. We evaluated its performance on 271 pairs of T1W-Gad MRI scans from 226 patients who underwent SRS. An expert oncological neurosurgeon manually delineated 1,889 brain metastases in all the MRI scans (1,368 with diameters > 5 mm, 834 > 10 mm). The SimU-Net model was trained/validated on 205 pairs from 169 patients (1,360 metastases) and tested on 66 pairs from 57 patients (529 metastases). The results were then compared to the ground truth delineations. Results SimU-Net yielded a mean (std) detection precision and recall of 1.00±0.00 and 0.99±0.06 for metastases > 10 mm, 0.90±0.22 and 0.97±0.12 for metastases > 5 mm of, and 0.76±0.27 and 0.94±0.16 for metastases of all sizes. It improves lesion detection precision by 8% for all metastases sizes and by 12.5% for metastases < 10 mm with respect to standalone 3D U-Net. The segmentation Dice scores were 0.90±0.10, 0.89±0.10 and 0.89±0.10 for the above metastases sizes, all above the observer variability of 0.80±0.13. Conclusion Automated detection and volumetric quantification of brain metastases following SRS have the potential to enhance the assessment of treatment response and alleviate the clinician workload.

Funder

Hebrew University of Jerusalem

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3